Growth of maps, distortion in groups and symplectic geometry
نویسندگان
چکیده
منابع مشابه
Theta functions on covers of symplectic groups
We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$. This representation is obtained from the residues of Eisenstein series on this group. If $r$ is odd, $nle r
متن کاملGraphs, Geometry, 3-transpositions, and Symplectic F2-transvection Groups
In this paper we begin the classification completed in [12] of all partial linear spaces n , graphs F, and groups G which satisfy one of the following: I. II = (0>, ££) is a connected partial linear space of order 2 in which every pair of intersecting lines lies in a subspace isomorphic to the dual of an affine plane of order 2; II. F is a connected graph such that, for each vertex x of F, the ...
متن کاملHeat Kernels, Symplectic Geometry, Moduli Spaces and Finite Groups
In this note we want to discuss some applications of heat kernels in symplectic geometry, moduli spaces and finite groups. More precisely we will prove the nonabelian localization formula in symplectic geometry, derive formulas for the symplectic volume and intersection numbers of the moduli space of flat connections on a Riemann surface, and obtain several quite general formulas for the number...
متن کاملAn Introduction to Lie Groups and Symplectic Geometry
A series of nine lectures on Lie groups and symplectic This is an unofficial version of the notes and was last modified on 19 February 2003. (Mainly to correct some very bad mistakes in Lecture 8 about Kähler and hyperKähler reduction that were pointed out to me by Eugene Lerman.) Please send any comments, corrections or bug reports to the above e-mail address. Introduction These are the lectur...
متن کاملSymplectic Geometry
1 Symplectic Manifolds 5 1.1 Symplectic Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Symplectic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Cotangent Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Moser’s Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5 Darboux and Moser Theorems . . . . . . . . . . . . . . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2002
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-002-0251-x